LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and numerical studies of nozzle effect on powder flow behaviors in directed energy deposition additive manufacturing

Photo from wikipedia

Abstract The spatial distribution of the flying powder particles was simulated by the established integrated model, in which computational fluid dynamics and discrete element methods were combined. In addition to… Click to show full abstract

Abstract The spatial distribution of the flying powder particles was simulated by the established integrated model, in which computational fluid dynamics and discrete element methods were combined. In addition to the finite element model of heat transfer, the influences of the defocused amount, gas flow rate, and nozzle diameter on the DED-AM process were studied. Comparison with experimental observations can validate the proposed models. The results indicate that the negative defocused amount is benefit for powder particles to fly on the melt pool center and higher laser energy can be applied to the deposition layer. The powder particle speeds can be accelerated by increasing both the carrier gas and shield gas flow rates. As a result, the laser energy attenuation and the average temperature rise of powder particles decrease. However, the shield gas can lead to scattering of the powders, which causes the higher average temperature rise. When the carrier gas velocity remains constant, an excessively high or low nozzle diameter can lead to an increase in the divergence angle. The divergence angle can be minimized by the optimal selection of nozzle diameter.

Keywords: gas; powder particles; powder; deposition; energy; flow

Journal Title: International Journal of Mechanical Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.