LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extractive summarization of clinical trial descriptions

Photo by nappystudio from unsplash

PURPOSE Text summarization of clinical trial descriptions has the potential to reduce the time required to familiarize oneself with the subject of studies by condensing long-form detailed descriptions to concise,… Click to show full abstract

PURPOSE Text summarization of clinical trial descriptions has the potential to reduce the time required to familiarize oneself with the subject of studies by condensing long-form detailed descriptions to concise, meaning-preserving synopses. This work describes the process and quality of automatically generated summaries of clinical trial descriptions using extractive text summarization methods. METHODS We generated a novel dataset from the detailed descriptions and brief summaries of trials registered on clinicaltrials.gov. We executed several text summarization algorithms on the detailed descriptions in this corpus and calculated the standard ROUGE metrics using the brief summaries included in the record as a reference. To investigate the correlation of these metrics with human sentiments, four reviewers assessed the content-completeness of the generated summaries and the helpfulness of both the generated and reference summaries via a Likert scale questionnaire. RESULTS The filtering stages of the dataset generation process reduce the 277,228 trials registered on clinicaltrials.gov to 101,016 records usable for the summarization task. On average, the summaries in this corpus are 25% the length of the detailed descriptions. Of the evaluated text summarization methods, the TextRank algorithm exhibits the overall best performance with a ROUGE-1 F1 score of 0.3531, ROUGE-2 F1 score of 0.1723, and ROUGE-L F1 score of 0.3003. These scores correlate with the assessment of the helpfulness and content similarity by the human reviewers. Inter-rater agreement for the helpfulness and content similarity was slight and fair respectively (Fleiss' kappa of 0.12 and 0.22). CONCLUSIONS Extractive summarization is a viable tool for generating meaning-preserving synopses of detailed clinical trial descriptions. Further, the human evaluation has shown that the ROUGE-L F1 score is useful for rating the general quality of generated summaries of clinical trial descriptions in an automated way.

Keywords: clinical trial; trial descriptions; summarization clinical; text summarization; summarization

Journal Title: International journal of medical informatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.