LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A case study of gas drainage to low permeability coal seam

Photo from wikipedia

Abstract Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at… Click to show full abstract

Abstract Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at low permeability coal seam is a key factor for gas control of coal mine. In order to improve the drainage effect, this paper establishes a three-dimensional solid-gas-liquid coupling numerical model, and the gas drainage amounts of different schemes are examined inside the overburden material around the goaf. The Yangquan mine area is selected for the case study, and the gas movement regularity and emission characteristics are analyzed in detail, as well as the stress and fissure variation regularity. Also examinations are the released gas movement, enrichment range and movement regularity during coal extraction. Moreover, the gas drainage technology and drainage parameters for the current coal seam are studied. After measuring the gas drainage flow in-situ, it is concluded that the technology can achieve notable drainage results, with gas drainage rate increase by 30%–40% in a low permeability coal seam.

Keywords: coal seam; gas drainage; gas; drainage; permeability coal

Journal Title: International journal of mining science and technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.