LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer

Photo from wikipedia

Abstract Studied in the present paper is the phenomenon of interaction of suspended particles with the fluid over a stretchable rotating disk. The physical insights into the resulting flow behavior… Click to show full abstract

Abstract Studied in the present paper is the phenomenon of interaction of suspended particles with the fluid over a stretchable rotating disk. The physical insights into the resulting flow behavior and heat transfer rate of two phase equilibrium are the main targets. How the stretching contributes to the dusty flow character will be clarified. Governing equations of motion and energy are first transformed into similarity systems representing the fluid and dust stages. In the absence of dust particles, the whole system collapses onto the well-known von Karman rotating disk subject to a wall deformation in the radial direction. Numerical simulations are next performed to resolve the fluid and dust phases and their thermal responses to the interaction. The local wall shears, the wall slippage of the colloids, the far-field behaviors, and the heat transfer rates of both fluid and dust particles are eventually investigated graphically and tabularly in detail with physical insights.

Keywords: rotating disk; stretchable rotating; dust particles; dust; heat transfer

Journal Title: International Journal of Multiphase Flow
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.