Abstract We study a hyperelastic model of some biological soft tissues with emphasis on the problem of its matching with the material parameters acquired by experimental mechanical tests. First, we… Click to show full abstract
Abstract We study a hyperelastic model of some biological soft tissues with emphasis on the problem of its matching with the material parameters acquired by experimental mechanical tests. First, we study the polyconvexity property of the hyperelastic model. Then, we explore the notion of equivalent sets of material parameters. We perform a numerical study of the regions of equivalent material parameters characterizing the curves predicted by the hyperelastic model that are close, within a prefixed tolerance, to those given by the experimental data. In the numerical study we use the quadratic variation and the Hausdorff distance. The study suggests that a qualitative knowledge of shape and volume of the regions of equivalent material parameters can provide both a criterion for the optimal match between the model with the experimental data and an indication on the reducibility of the number of parameters used in the model.
               
Click one of the above tabs to view related content.