LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Submodels of model of nonlinear diffusion with non-stationary absorption

Photo by firmbee from unsplash

Abstract We study the model, describing a nonlinear diffusion process (or a heat propagation process) in an inhomogeneous medium with non-stationary absorption (or source). We found tree submodels of the… Click to show full abstract

Abstract We study the model, describing a nonlinear diffusion process (or a heat propagation process) in an inhomogeneous medium with non-stationary absorption (or source). We found tree submodels of the original model of the nonlinear diffusion process (or the heat propagation process), having different symmetry properties. We found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found either explicitly, or their search is reduced to the solution of the nonlinear integral equations. For example, we obtained the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with two fixed "black holes", and the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with the fixed "black hole" and the moving "black hole". The presence of the arbitrary constants in the integral equations, that determine these solutions provides a new opportunities for analytical and numerical study of the boundary value problems for the received submodels, and, thus, for the original model of the nonlinear diffusion process (or the heat distribution process). For the received invariant submodels we are studied diffusion processes (or heat distribution process) for which at the initial moment of the time at a fixed point are specified or a concentration (a temperature) and its gradient, or a concentration (a temperature) and its rate of change. Solving of boundary value problems describing these processes are reduced to the solving of nonlinear integral equations. We are established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields, propagation of heat in inhomogeneous medium.

Keywords: diffusion process; diffusion; process; nonlinear diffusion; process heat

Journal Title: International Journal of Non-linear Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.