LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory

Photo by dawson2406 from unsplash

Abstract The present work is concerned with the application of the variational differential quadrature (VDQ) method (Faghih Shojaei and Ansari, 2017), in the area of computational mechanics, to the nonlinear… Click to show full abstract

Abstract The present work is concerned with the application of the variational differential quadrature (VDQ) method (Faghih Shojaei and Ansari, 2017), in the area of computational mechanics, to the nonlinear large deformation analysis of shell-type structures. To this end, based on the six-parameter shell model, the functional of energy in quadratic form is derived based on Hamilton’s principle which is then directly discretized by the VDQ technique. The formulation of article is presented in a general form so that it can be readily used for different structures such as beams, annular plates, cylindrical shells and hemispherical shells under various loading conditions. In order to reveal the accuracy of developed solution strategy, it is tested in several popular benchmark problems for the geometric nonlinear analysis of shells. The results show that the present numerical method is capable of yielding highly accurate solution in the nonlinear large deformation analysis of shells. It is also easy to implement due to its compact and explicit matrix formulation.

Keywords: deformation analysis; analysis shells; analysis; method; large deformation; nonlinear large

Journal Title: International Journal of Non-Linear Mechanics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.