LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A high-throughput screen for the identification of compounds that inhibit nematode gene expression by targeting spliced leader trans-splicing

Photo by marivlassi from unsplash

Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most… Click to show full abstract

Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most effective current strategy to control nematode infections involves large scale treatment programs with anthelmintic drugs. This strategy is at risk from the emergence of drug resistant parasites. Parasitic nematodes also affect livestock, which are treated with the same limited group of anthelmintic drugs. Livestock parasites resistant to single drugs, and even multi-drug resistant parasites, are appearing in many areas. There is therefore a pressing need for new anthelmintic drugs. Here we use the nematode Caenorhabditis elegans as a model for parasitic nematodes and demonstrate that sinefungin, a competitive inhibitor of methyltransferases, causes a delay in development and reduced fecundity, and inhibits spliced leader trans-splicing. Spliced leader trans-splicing is an essential step in gene expression that does not occur in the hosts of parasitic nematodes, and is therefore a potential target for new anthelmintic drugs. We have exploited the ability of sinefungin to inhibit spliced leader trans-splicing to adapt a green fluorescent protein based reporter gene assay that monitors spliced leader trans-splicing for high-throughput screening for new anthelmintic compounds. We have established a protocol for robust high-throughput screening, combining mechanical dispensing of living C. elegans into 384- or 1536- well plates with addition of compounds using an acoustic liquid dispenser, and the detection of the inhibition of SL trans-splicing using a microplate reader. We have tested this protocol in a first pilot screen and envisage that this assay will be a valuable tool in the search for new anthelmintic drugs.

Keywords: leader trans; spliced leader; anthelmintic drugs; trans splicing; high throughput

Journal Title: International Journal for Parasitology: Drugs and Drug Resistance
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.