LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spray drying of poorly soluble drugs from aqueous arginine solution.

Photo from archive.org

Co-amorphous drug-amino acid mixtures have shown potential for improving the solid-state stability and dissolution behavior of amorphous drugs. In previous studies, however these mixtures have been produced mainly with small-scale… Click to show full abstract

Co-amorphous drug-amino acid mixtures have shown potential for improving the solid-state stability and dissolution behavior of amorphous drugs. In previous studies, however these mixtures have been produced mainly with small-scale preparation methods, or with methods that have required the use of organic solvents or other dissolution enhancers. In the present study, co-amorphous ibuprofen-arginine and indomethacin-arginine mixtures were spray dried from water. The mixtures were prepared at two drug-arginine molar ratios (1:1 and 1:2). The properties of the prepared mixtures were investigated with differential scanning calorimetry, X-ray powder diffractometry, Fourier-transform infrared spectroscopy and a 24h, non-sink, dissolution study. All mixtures exhibited a single glass transition temperature (Tg), evidence of the formation of homogenous single-phase systems. Fourier transform infrared spectroscopy revealed strong interactions (mainly salt formation) that account for the positive deviation between measured and estimated Tg values. No crystallization was observed during a 1-year stability study in either 1:1 or 1:2 mixtures, but in the presence of moisture, handling difficulties were encountered. The formation of co-amorphous salts led to improved dissolution characteristics when compared to the corresponding physical mixtures or to pure crystalline drugs.

Keywords: poorly soluble; spray drying; drying poorly; soluble drugs; spectroscopy; dissolution

Journal Title: International journal of pharmaceutics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.