Inkjet printing is a form of additive manufacturing where liquid droplets are selectively deposited onto a substrate followed by solidification. The process provides significant potential advantages for producing solid oral… Click to show full abstract
Inkjet printing is a form of additive manufacturing where liquid droplets are selectively deposited onto a substrate followed by solidification. The process provides significant potential advantages for producing solid oral dosage forms or tablets, including a reduction in the number of manufacturing steps as well as the ability to tailor a unique dosage regime to an individual patient. This study utilises solvent inkjet printing to print tablets through the use of a Fujifilm Dimatix printer. Using polyvinylpyrrolidone and thiamine hydrochloride (a model excipient and drug, respectively), a water-based ink formulation was developed to exhibit reliable and effective jetting properties. Tablets were printed on polyethylene terephthalate films where solvent evaporation in the ambient environment was the solidification mechanism. The tablets were shown to contain a drug loading commensurate with the composition of the ink, in its preferred polymorphic phase of a non-stoichiometric hydrate distributed homogenously. The printed tablets displayed rapid drug release. This paper illustrates solvent inkjet printing's ability to print entire free-standing tablets without an edible substrate being part of the tablet and the use of additional printing methods. Common problems with solvent-based inkjet printing, such as the use toxic solvents, are avoided. The strategy developed here for tablet manufacturing from a suitable ink is general and provides a framework for the formulation for any drug that is soluble in water.
               
Click one of the above tabs to view related content.