LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes.

Photo from wikipedia

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2‑PG) with the… Click to show full abstract

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2‑PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2‑PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2‑PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2‑PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2‑PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.

Keywords: photodynamic therapy; therapy gene; combination photodynamic; therapy; sirna

Journal Title: International journal of pharmaceutics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.