LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of piroxicam mini-tablets enabled by spherical cocrystallization.

Photo by myriamzilles from unsplash

We examined the potential of the spherical cocrystallization (SCC) technology in simultaneously enhancing tablet manufacturability and dissolution of poorly soluble drugs by developing a mini-tablet formulation of piroxicam. The manufacturing… Click to show full abstract

We examined the potential of the spherical cocrystallization (SCC) technology in simultaneously enhancing tablet manufacturability and dissolution of poorly soluble drugs by developing a mini-tablet formulation of piroxicam. The manufacturing of mini-tablets using a direct compression (DC) process is more challenging than conventional tablets because of the much stricter requirement on the micromeritic properties of formulated powders. The SCC process in this work involved two steps: 1) preparing a new piroxicam-ferulic acid (PRX-FA) cocrystal, and 2) forming spherical agglomerates with the aid of a suitable bridging liquid. The PRX-FA cocrystal exhibited enhanced solubility as well as improved plasticity. The bridging liquid, a mixture of chloroform and ethyl acetate (EA) (1: 2, v/v), was chosen based on the high computed adsorption energy of chloroform and EA on morphologically dominating crystal faces of piroxicam. The improved flowability, tabletability, and dissolution rate of spherical PRX-FA enabled the successful development of a DC mini-tablet formulation with a high PRX loading (41 wt%). This example shows that SCC is a powerful enabling technology for DC tablet formulation development of challenging drugs.

Keywords: mini tablets; spherical cocrystallization; prx; development; tablet

Journal Title: International journal of pharmaceutics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.