LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Polycaprolactone-Based Metronidazole Matrices for Intravaginal Extended Drug Delivery Using a Mechanochemically Prepared Therapeutic Deep Eutectic System.

Photo from wikipedia

The engineering of crystalline multi-component drug systems, including cocrystals and salts, is now an established method of modifying the physicochemical properties and dissolution behaviour of an active ingredient. Remarkably, liquid… Click to show full abstract

The engineering of crystalline multi-component drug systems, including cocrystals and salts, is now an established method of modifying the physicochemical properties and dissolution behaviour of an active ingredient. Remarkably, liquid drug systems, including therapeutic ionic liquids and therapeutic deep eutectic solvents (THEDES), remain largely unexplored as an untapped reservoir for drug modification. In this work, the formation of a THEDES containing metronidazole (MET), the preferred first-line treatment for bacterial vaginosis (BV), was explored. The formed THEDES was evaluated for its dissolution behaviour from a simple polycaprolactone (PCL) matrix, in order to achieve an extended release, balanced with an appropriate onset of action, hence offering improved MET intravaginal application. To minimise handling of the liquid THEDES, an end-to-end continuous process that enables feeding of the raw materials in their respective solid forms, and collection of a solidified final formulation is presented. The concurrent THEDES formation and formulation were carried out using a bench scale (approx. 10g) twin-screw hot melt extruder. The chosen parent reagents have shown sufficiently strong reactivity and resulted in successful and complete conversion to THEDES while in the presence of PCL, during the extrusion process. The formulated THEDES-PCL matrix exhibited significantly improved onset of drug release followed by a controlled delivery of MET over a total 7-day period in SVF, proving itself as a viable alternative to oral therapy.

Keywords: delivery; development polycaprolactone; drug; deep eutectic; therapeutic deep

Journal Title: International journal of pharmaceutics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.