LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple variable effects in the customisation of fused deposition modelling 3D-printed medicines: a design of experiments (DoE) approach.

Fused deposition modelling (FDM) is the most explored three-dimensional (3D) printing technique in pharmaceutics. However, there is still a lack of knowledge about the factors influencing the properties of the… Click to show full abstract

Fused deposition modelling (FDM) is the most explored three-dimensional (3D) printing technique in pharmaceutics. However, there is still a lack of knowledge about the factors influencing the properties of the printed forms. Here, the main and combined effects of the presence of a pore former (mannitol, 0% or 10%), the infill percentage (50% or 100%) and the drug percentage (5% or 10%) on the pharmaceutical properties of 3D-printed forms were evaluated by a design of experiments (DoE) approach. Poly(Ɛ-caprolactone) filaments were produced by hot-melt extrusion and dexamethasone was used as a hydrophobic model drug. The 23 factorial design afforded eight formulations printed at 105 °C. The drug content ranged from 9.87 to 25.59 mg/unit, depending on the drug and infill percentages. The drug release profiles followed the Higuchi model. The infill percentage modulated the drug release rate, whereas the pore former had a combined effect on this parameter, depending on the drug and infill percentage levels. According to the DoE data, besides the changes in the infill percentage, the addition of a pore former can also tailor the drug release rate from 3D-printed solid forms. These findings may assist the development of personalised tumour implants by 3D printing.

Keywords: fused deposition; deposition modelling; drug; infill percentage; percentage; design

Journal Title: International journal of pharmaceutics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.