Cataract surgery is one of the most common and safe surgical procedures nowadays. However, it is not free of risks as endophthalmitis, ocular inflammation and posterior capsule opacification (PCO) can… Click to show full abstract
Cataract surgery is one of the most common and safe surgical procedures nowadays. However, it is not free of risks as endophthalmitis, ocular inflammation and posterior capsule opacification (PCO) can appear as post-surgery complications. The usual eye drop therapy used as prophylaxis for the former two complications has limited bioavailability. In turn, the prevention of PCO involves an adequate surgical technique and a careful choice of intraocular lens (IOL) design and material. Also, different drugs have been tested to reduce incidence of PCO, but no prophylaxis demonstrated to be completely effective. In the past few years, IOLs have been proposed as drug delivery devices to replace or/assist the usual eye drop therapy in the post-operatory period. The great advantage of drug loaded IOLs would be to ensure a continuous drug delivery, independent of patient's compliance without requiring any further action besides IOL implantation. The biggest challenge of drug loaded IOLs production is to achieve a controlled and extended release that meet therapeutic needs without inducing toxicity to the surrounding ocular tissues or affecting the physical properties of the lens. This review starts by addressing the possible complications after cataract surgery, as well as the most commonly adopted prophylaxis for each of them. The various types of IOLs are described and their main advantages/disadvantages are discussed. The different strategies pursued to incorporate drugs into the IOLs and control their release, which include soaking the IOL in the drugs solution, supercritical impregnation, surface modifications, and attachment of drug reservoirs to the IOL, among others, are reported. For each strategy, a summary of the publications is presented, which includes the target complication, the types and amounts of released drugs and the IOL materials. A brief description of each individual study is given afterwards. Optimization of drug loaded IOLs through mathematical modelling and possible issues raised by their sterilization are also tackled. At the end, the future commercialization of drug loaded IOLs is commented.
               
Click one of the above tabs to view related content.