LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Encapsulation of a Highly Hydrophilic Drug in Polymeric Particles: A Comparative Study of Batch and Microfluidic Processes.

Photo from wikipedia

The objective of this work was to investigate the effect of microfluidics on the quality attributes of metformin hydrochloride-loaded poly lactic-co-glycolic acid polymeric particles (MFH-PLGA PPs) when compared to a… Click to show full abstract

The objective of this work was to investigate the effect of microfluidics on the quality attributes of metformin hydrochloride-loaded poly lactic-co-glycolic acid polymeric particles (MFH-PLGA PPs) when compared to a traditional double emulsion batch method. The relationship of encapsulation and loading efficiencies, yield %, particle size, surface morphology, and release profile with process and formulation variables were determined using design of experiments (DoE). The effects of the dispersal method of the primary (sonication vs. vortex) or secondary emulsion (microfluidics vs. batch), polyvinyl alcohol concentration (PVA), and drug to polymer ratio were investigated. The PPs' size was impacted by both the PVA concentration and the type of primary and secondary emulsion dispersion methods. Microfluidics significantly increased the PPs' yield %, particle size, encapsulation, and loading efficiencies. The higher loaded microfluidic-based PPs had more burst release, following first-order release kinetics when compared to the lower loaded batch-based particles, which followed the Korsmeyer-Peppas model for release kinetics. Microfluidic-based PPs exhibited a smooth, porous, more uniform, and larger particle size with hollow structure than the batch-based PPs with a matrix-like structure. In conclusion, we have elucidated the effect of microfluidics on the quality attributes of MFH-PLGA PPs and their comparison to the traditional batch technique.

Keywords: polymeric particles; drug; size; batch; encapsulation; release

Journal Title: International journal of pharmaceutics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.