LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioadhesive poly(methyl vinyl ether-co-maleic anhydride)-TPGS copolymer modified PLGA/lipid hybrid nanoparticles for improving intestinal absorption of cabazitaxel.

Photo from wikipedia

A bioadhesive nanocarrier, PTNP, was constructed by utilizing a novel poly(methyl vinyl ether-co-maleic anhydride)- D-α-Tocopheryl polyethylene glycol succinate (PVMMA-TPGS) copolymer in the PLGA/lipid hybrid nanoparticles (PLGA NPs) for improving oral… Click to show full abstract

A bioadhesive nanocarrier, PTNP, was constructed by utilizing a novel poly(methyl vinyl ether-co-maleic anhydride)- D-α-Tocopheryl polyethylene glycol succinate (PVMMA-TPGS) copolymer in the PLGA/lipid hybrid nanoparticles (PLGA NPs) for improving oral delivery of cabazitaxel (CTX). The PVMMA-TPGS was synthesized by the ring-opening polymerization of the anhydride groups with the hydroxyl groups, combining the bioadhesive property of PVMMA with P-glycoprotein (P-gp) inhibitory effect of TPGS. The CTX-loaded PTNPs (CTX-PTNPs) were prepared by an emulsification-solvent evaporation method and performed a spherical appearance with a uniform particle size of 192.2 nm. The CTX-PTNPs were surface negatively charged, and exhibited good drug loading (10.2%) and encapsulation efficiency (92.1%). A sustained drug release and high stability in simulated gastrointestinal environment were confirmed in in vitro studies. The in vitro mucin adhesion and in vivo intestinal retention experiments indicated that the PTNPs had a stronger bioadhesive effect and a notably longer intestinal retention than the control PLGA NPs, due to the interaction of PVMMA on the PTNP surface with the intestinal mucosa. Moreover, an enhanced intestinal permeability of the PTNPs was also verified in in vivo and ex vivo intestinal permeation studies, which was probably attributed to the extended retention of PTNPs in intestinal mucosa and the P-gp inhibitory effect of TPGS. As respected, in in vivo pharmacokinetic study, the Tmax and oral bioavailability of CTX were dramatically improved to 1.08 h and 28.84% by the PTNPs, respectively, obviously superior to the CTX solution and the PLGA NPs, further demonstrating the high-efficiency in oral delivery of CTX. Hence, this bioadhesive carrier is proposed to be a potential and promising strategy for increasing oral absorption of small molecule insoluble drugs.

Keywords: maleic anhydride; methyl vinyl; ether maleic; ctx; vinyl ether; poly methyl

Journal Title: International journal of pharmaceutics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.