LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of deformation and recrystallization behavior in oxide dispersion strengthened 18Cr ferritic steel

Photo by danieledandreti from unsplash

Abstract This paper presents the results of an experimental study aimed to obtain an ultrafine equiaxed grain distribution in 18Cr oxide dispersion strengthened (ODS) ferritic steel through cold working and… Click to show full abstract

Abstract This paper presents the results of an experimental study aimed to obtain an ultrafine equiaxed grain distribution in 18Cr oxide dispersion strengthened (ODS) ferritic steel through cold working and annealing starting with an initial columnar grain structure with a predominant α-fibre texture in a product consolidated from the alloy powders during extrusion at high temperatures. Deformation along the extruded direction (ED) resulted in the retention of α-fibre texture, while deformation in the transverse direction (TD) showed a shear banded structure with a reduced percentage of α-fibre texture. Differential Scanning Calorimetry (DSC) analysis of the deformed steel established the occurrence of two significant events during heating namely recovery and recrystallization, whose temperatures were influenced by the heating rate. The recovery and recrystallization domains have been distinctly observed at 1350 K and 1420 K respectively at a low heating rate of 7 K min−1. The resultant microstructure showed very coarse elongated grains interspersed with regions of ultrafine ( //ED α-fibre texture, which improved further with repeated deformation and two step heat treatment cycles. A gradual increase in hardness during the above cycles was observed reflecting the increase in dislocation density which offers the propensity to achieve an ultrafine grained microstructure.

Keywords: recrystallization; dispersion strengthened; ferritic steel; deformation; oxide dispersion; steel

Journal Title: International Journal of Pressure Vessels and Piping
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.