LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale modeling accounting for inelastic mechanisms of fuzzy fiber composites with straight or wavy carbon nanotubes

Photo from wikipedia

Abstract This paper proposes a micromechanical approach aimed at identifying the response of unidirectional fuzzy fiber composites undergoing inelastic fields. Fuzzy fibers are reinforcement fibers coated with radially aligned straight… Click to show full abstract

Abstract This paper proposes a micromechanical approach aimed at identifying the response of unidirectional fuzzy fiber composites undergoing inelastic fields. Fuzzy fibers are reinforcement fibers coated with radially aligned straight or wavy carbon nanotubes grown through chemical deposition process (PVD or CVD). Due to this nature, the composite with fuzzy fibers is described by three scales: i) the microscale consisting of carbon nanotubes and their surrounding matrix, ii) the mesoscale containing the fiber, the nanocomposite and the matrix, and iii) the macroscale related to the overall fuzzy fiber composite. The developed framework considers for the mesoscopic scale an analytical formulation, based on the composite cylinders assemblage (CCA) method, combining the principles of the Transformation Field Analysis (TFA) technique. A numerical example that includes comparisons with full field homogenization strategies confirms the accuracy of the framework to predict the overall response, as well as the average local fields of the constituents.

Keywords: straight wavy; fuzzy fiber; wavy carbon; fiber composites; carbon nanotubes

Journal Title: International Journal of Solids and Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.