LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India

Photo from wikipedia

Abstract The relation between the water discharge (Q) and suspended sediment concentration (SSC) of the River Ramganga at Bareilly, Uttar Pradesh, in the Himalayas, has been modeled using Artificial Neural… Click to show full abstract

Abstract The relation between the water discharge (Q) and suspended sediment concentration (SSC) of the River Ramganga at Bareilly, Uttar Pradesh, in the Himalayas, has been modeled using Artificial Neural Networks (ANNs). The current study validates the practical capability and usefulness of this tool for simulating complex nonlinear, real world, river system processes in the Himalayan scenario. The modeling approach is based on the time series data collected from January to December (2008–2010) for Q and SSC. Three ANNs (T1-T3) with different network configurations have been developed and trained using the Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. Networks were optimized using the enumeration technique, and, finally, the best network is used to predict the SSC values for the year 2011. The values thus obtained through the ANN model are compared with the observed values of SSC. The coefficient of determination (R2), for the optimal network was found to be 0.99. The study not only provides insight into ANN modeling in the Himalayan river scenario, but it also focuses on the importance of understanding a river basin and the factors that affect the SSC, before attempting to model it. Despite the temporal variations in the study area, it is possible to model and successfully predict the SSC values with very simplistic ANN models.

Keywords: sediment concentration; river ramganga; river; artificial neural; network; suspended sediment

Journal Title: International Journal of Sediment Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.