LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of anti-Fourier heat transfer for non-equilibrium gas flows through micro/nanochannels

Photo from wikipedia

Abstract In this study we use the direct simulation Monte Carlo (DSMC) to elaborate on the heat transfer patterns in the pressure-driven rarefied flow through micro/nanochannels. Finite length planar micro/nanochannels… Click to show full abstract

Abstract In this study we use the direct simulation Monte Carlo (DSMC) to elaborate on the heat transfer patterns in the pressure-driven rarefied flow through micro/nanochannels. Finite length planar micro/nanochannels are considered using with symmetrical wall heat flux boundary conditions, and the gas flow is considered to be in slip and transition regimes. When considering zero-conductive or cooled walls, the DSMC solution predicts a possibility of the anti-Fourier heat transfer, i.e., the transfer of heat from cold-to-hot regions of the flow field. It turns out that the competition between the contributions of temperature gradient and pressure gradient (shear stress) in the heat flux results in three different heat transfer regimes. The regimes consist of complete hot-to-cold heat transfer regime, the entire anti-Fourier regime, and localized anti-Fourier regime. While the heat flux due to the shear stress is directed from the outlet towards the inlet, the Fourier term is strongly influenced by viscous slip heating, which then acts as a heat source, and contributes to patterns of heat flux on the fluid layer adjacent to the walls. Furthermore, the heat flux regimes for complete or localized cold-to-hot transfer are classified according to the magnitude of the normalized heat flux and the Knudsen number. Additionally, effects of heat flux condition on the mass flow rate are discussed.

Keywords: micro nanochannels; heat transfer; transfer; heat; heat flux; anti fourier

Journal Title: International Journal of Thermal Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.