LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heat transfer and thermodynamic analysis by introducing multiple alternation structures into double-layer microchannel heat sinks

Photo by jordanmcdonald from unsplash

Abstract The study examined the performance of a novel staggered flow alternation structure in the Double-layer Microchannel Heat Sink (DMHS) based on authors' prior work and further detailed and quantitatively… Click to show full abstract

Abstract The study examined the performance of a novel staggered flow alternation structure in the Double-layer Microchannel Heat Sink (DMHS) based on authors' prior work and further detailed and quantitatively influences regarding the effects of the numbers of multiple staggered flow alternation structures are thoroughly investigated. Yet the analysis also contains more in-depth description about the entropy generation caused by heat transfer and liquid flow based on the second-law perspective. The major influential factors combining thermal performance and pressure drop penalty such as Nusselt number, Reynolds number, pumping power and thermal performance factor have been numerically studied. Moreover, the flow directions with parallel/counter stream were also compared in the present work. Through these detailed analysis, the propose multiple novel design offers much superior performance with better thermal uniformity and augment entropy generation number. The results show that the temperature difference of the substrate can be made quite uniformly by adding the number of multiple staggered flow alternation structure, and superior performance of the proposed DMHS can be achieved with affordable pressure drop penalty, while the DMHS with single alternation structure shows higher thermal performance.

Keywords: heat; layer microchannel; performance; double layer; alternation; analysis

Journal Title: International Journal of Thermal Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.