Abstract With the continued improvement in integration and power density of electronic devices, it is difficult to simultaneously achieve excellent temperature uniformity and cooling performance with the increasing heat flux… Click to show full abstract
Abstract With the continued improvement in integration and power density of electronic devices, it is difficult to simultaneously achieve excellent temperature uniformity and cooling performance with the increasing heat flux of electronic component. Herein, a multi-jet impinging system with trapezoidal fins and secondary channels, which can be used to efficiently cool the electronic component, is proposed. The effects of different jet arrangement patterns and geometric parameters on heat transfer in the heat sinks were investigated through numerical simulations. Individual parameter analysis was conducted, and the numerical results provided deep insight into heat transfer and flow mechanism. The unilateral jet arrangement patterns yielded larger heat transfer coefficients and pressure drops, but the bilateral jet arrangement pattern exhibited better comprehensive performance. The jet patterns with quasi-symmetric flow and heat transfer features showed a better dissipation performance, and the temperature difference of the heated surface was
               
Click one of the above tabs to view related content.