Abstract Prostate Cancer (PCa) is one of the most prominent cancer among men. Early diagnosis and treatment planning are significant in reducing the mortality rate due to PCa. Accurate prediction… Click to show full abstract
Abstract Prostate Cancer (PCa) is one of the most prominent cancer among men. Early diagnosis and treatment planning are significant in reducing the mortality rate due to PCa. Accurate prediction of grade is required to ensure prompt treatment for cancer. Grading of prostate cancer can be considered as an ordinal class classification problem. This paper presents a novel method for the grading of prostate cancer from multiparametric magnetic resonance images using VGG-16 Convolutional Neural Network and Ordinal Class Classifier with J48 as the base classifier. Multiparametric magnetic resonance images of the PROSTATEx-2 2017 grand challenge dataset are employed for this work. The method achieved a moderate quadratic weighted kappa score of 0.4727 in the grading of PCa into 5 grade groups, which is higher than state-of-the-art methods. The method also achieved a positive predictive value of 0.9079 in predicting clinically significant prostate cancer.
               
Click one of the above tabs to view related content.