LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-based drug designing towards the identification of potential anti-viral for COVID-19 by targeting endoribonuclease NSP15

Photo from wikipedia

Abstract The world is facing health and economic havoc due to the Corona Virus Disease-2019 (COVID-19) pandemic. Given the number of affected people and the mortality rate, the virus is… Click to show full abstract

Abstract The world is facing health and economic havoc due to the Corona Virus Disease-2019 (COVID-19) pandemic. Given the number of affected people and the mortality rate, the virus is undoubtedly a serious threat to humanity. By analogy with earlier reports about Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV) - viruses, the novel Coronavirus’ replication mechanism is likely well understood. The structure of an endoribonuclease (NSP15) of SARS-CoV-2 was reported recently. This enzyme is expected to play a crucial role in replication. In this work, attempts were made to identify inhibitors of this enzyme. To achieve the goal, high throughput in silico screening and molecular docking procedures were performed. From an Enamine database of a billion compounds, 3978 compounds with potential antiviral activity were selected for screening and induced fit docking that funneled down to eight compounds with good docking score and docking energy. Detailed analysis of non-covalent interactions at the active site and the apparent match of the molecule with the shape of the binding pocket were assessed. All the compounds show significant interactions for tight binding. Since all the compounds are synthetic with favorable drug-like properties, these may be considered for immediate optimization and downstream applications.

Keywords: endoribonuclease nsp15; covid; structure based; based drug

Journal Title: Informatics in Medicine Unlocked
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.