LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An approach to quantify natural durability of Eucalyptus bosistoana by near infrared spectroscopy for genetic selection

Photo from wikipedia

Abstract Natural durability within a timber species can be variable. Hence efficient assessments of natural durability are required to ensure quality either through tree breeding or segregation during production. In… Click to show full abstract

Abstract Natural durability within a timber species can be variable. Hence efficient assessments of natural durability are required to ensure quality either through tree breeding or segregation during production. In this study, first the relationship between extractive content and mass loss of Eucalyptus bosistoana heartwood caused by a white and a brown-rot fungus was validated. Then the ability of NIR spectroscopy as a high-throughput method to evaluate heartwood decay resistance was examined. Finally the NIR method was applied to a tree breeding trial. A correlation between extractive content and mass loss against the white-rot fungus (Perenniporia tephropora) and the brown-rot fungus (Coniophora olivacea) were found. Analysis of NIR spectra indicated that this relationship is causal with shared bands for mass loss and extractive content models at 6650, 6017, 5265 and 4659 cm−1. Partial least squares regression (PLSR), supplemented with spectra normalisation and variable selection, allowed prediction of mass loss with a residual mean square error (RMSE) of 7.48 % and 5.76 % for the white-rot and brown-rot, respectively. This level of precision allowed the characterisation of a E. bosistoana resource which showed a range of mass loss from 0 to 60 %. Genetic control was found for mass loss by the white-rot ( h2 = 0.70 and 0.24) and the brown-rot ( h2 = 0.15 and 0.13) at two sites in New Zealand. The rankings were correlated between sites, with genetic correlations ( R g 2 ) of 0.69 and 0.63 for white-rot and brown-rot, respectively, as well as to the predicted extractive content (0.82 to 0.92). However, the study indicated a significant site effect on the decay resistance of the E. bosistoana heartwood. In summary, this study has shown that the decay resistance could be assessed rapidly and efficiently using NIR technology for genetic selection.

Keywords: brown rot; natural durability; mass loss; spectroscopy

Journal Title: Industrial Crops and Products
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.