The use of low intensity pulsed ultrasound (LIPUS) to accelerate the fracture repair process in humans was first reported by Xavier & Duarte in 1983 [1]. This success led to… Click to show full abstract
The use of low intensity pulsed ultrasound (LIPUS) to accelerate the fracture repair process in humans was first reported by Xavier & Duarte in 1983 [1]. This success led to clinical trials and the 1994 approval of LIPUS in the United States for the accelerated healing of certain fresh fractures. LIPUS was approved in the US for the treatment of established non-unions in 2000, and is also approved around the world. In this article, we present relevant literature on the effect of LIPUS on bone healing in patients with acute fractures and non-unions and provide a molecular explanation for the effects of LIPUS on bone healing. Data on LIPUS accelerated fracture repair is controversial with many controlled studies showing a positive effect. However, the largest trial in acute tibial fractures stabilized with an intramedullary nail failed to show significant differences in accelerated healing and in functional outcomes. Uncontrolled data from prospective case series suggest a positive effect of LIPUS in non united fractures with healing rates of around 85%. Evaluation of results from studies, both positive and negative, has enabled an understanding that the patient population with potentially the greatest benefit from receiving LIPUS are those at-risk for fracture healing, e.g. diabetic & elderly patients. The elucidation of a pathway to activate the Rac-1 pathway by LIPUS might explain this beneficial effect. Overall, there is a strong need for further clinical trials, particularly for acute fractures at risk of progressing to non-union and in established non-unions including a comparison to the current standard of care.
               
Click one of the above tabs to view related content.