LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model-free bounds on Value-at-Risk using extreme value information and statistical distances

Photo from wikipedia

We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $\varphi(\mathbf X)$ where $\varphi$ is an aggregation function and $\mathbf X = (X_1,\dots,X_d)$ is a random vector… Click to show full abstract

We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $\varphi(\mathbf X)$ where $\varphi$ is an aggregation function and $\mathbf X = (X_1,\dots,X_d)$ is a random vector with known marginal distributions and partially known dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $\mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Fr\'echet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $\mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $\mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Fr\'echet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Fr\'echet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.

Keywords: value; value risk; extreme value; value information; information

Journal Title: Insurance: Mathematics and Economics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.