The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted… Click to show full abstract
The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues.
               
Click one of the above tabs to view related content.