BACKGROUND Hepatic ischemia reperfusion injury (IRI) is a primary cause of organ dysfunction occurring during liver resection surgery and transplantation. Galectin-1, an endogenous lectin expressed on lymphoid organs, plays an… Click to show full abstract
BACKGROUND Hepatic ischemia reperfusion injury (IRI) is a primary cause of organ dysfunction occurring during liver resection surgery and transplantation. Galectin-1, an endogenous lectin expressed on lymphoid organs, plays an important role in governing innate and adaptive immunity. This study was designed to determine the therapeutic role of galectin-1 and underlying mechanism in hepatic IRI. METHODS Male C57BL/6 mice were subjected to 90 min of partial hepatic ischemia followed by reperfusion with or without treatment with recombinant galectin-1 (rGal-1) or neutralizing anti-IL-10 antibody. Mice were sacrificed at 6 and 24 h following reperfusion. Liver damage related enzymes were determined and cytokines/chemokines were measured by qPCR and ELISA. RESULTS Administration of rGal-1 significantly attenuated hepatic IRI, including a remarkable reduction in serum ALT/AST levels and an improved liver histology score compared to controls. rGal-1 treatment reduced TUNEL positive apoptotic hepatocytes, attenuated proinflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12, IFN-γ, IL-17) and chemokines (CXCL-1, CXCL-10) levels, but upregulated IL-10 expression, compared with controls. In addition, rGal-1 increased the production of IL-10 in hepatic macrophages in vivo and in vitro. Blockade of IL-10 using neutralizing anti-IL-10 antibody reversed the protection of galectin-1 in hepatic IRI in mice. CONCLUSION These data suggest that galectin-1 may attenuate hepatic IRI via an IL-10-dependent mechanism, which is a promising therapeutic target.
               
Click one of the above tabs to view related content.