LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rimonabant ameliorates hepatic ischemia/reperfusion injury in rats: Involvement of autophagy via modulating ERK- and PI3K/AKT-mTOR pathways.

Photo from wikipedia

Hepatic ischemia/reperfusion (HIR), which can result in severe liver injury and dysfunction, is usually associated with autophagy and endocannabinoid system derangements. Whether or not the modulation of the autophagic response… Click to show full abstract

Hepatic ischemia/reperfusion (HIR), which can result in severe liver injury and dysfunction, is usually associated with autophagy and endocannabinoid system derangements. Whether or not the modulation of the autophagic response following HIR injury is involved in the hepatoprotective effect of the cannabinoid receptor 1(CB1R) antagonist rimonabant remains elusive and is the aim of the current study. Rats pre-treated with rimonabant (3 mg/kg) or vehicle underwent 30 min hepatic ischemia followed by 6 hrs. reperfusion. Liver injury was evaluated by serum ALT, AST, bilirubin (total and direct levels) and histopathological examination. The inflammatory, profibrotic and oxidative responses were investigated by assessing hepatic tumor necrosis factor α (TNFα), nuclear factor kappa B (NF-κB), transforming growth factor (TGF-β), lipid peroxidation and reduced glutathione. The hepatic levels of CB1R and autophagic markers p62, Beclin-1, and LC3 as well as the autophagic signaling inhibitors ERK1/2, PI3K, Akt and mTOR were also determined. Rimonabant significantly attenuated HIR-induced increases in hepatic injury, inflammation, profibrotic responses and oxidative stress and improved the associated pathological features. Rimonabant modulated the expression of p62, Beclin-1, and LC3, down-regulated CB1R, and dcreased pERK1/2, PI3K, Akt, and mTOR activities. The current study suggests that rimonabant can protect the liver from IR injury at least in part by inducing autophagy, probably by modulating ERK- and/or PI3K/AKT-mTOR signaling.

Keywords: injury; akt mtor; hepatic ischemia; pi3k akt

Journal Title: International immunopharmacology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.