Rheumatoid arthritis (RA) is an autoimmune disease that causes joint destruction. Although its etiology remains unknown, citrullinated proteins have been considered as an auto-antigen able to trigger an inflammatory response… Click to show full abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes joint destruction. Although its etiology remains unknown, citrullinated proteins have been considered as an auto-antigen able to trigger an inflammatory response in RA. Herein, we modified the classical antigen-induced arthritis (AIA) model by using citrullinated human plasma fibrinogen (hFIB) as an immunogen to investigate the mechanism of inflammation-driven joint damage by citrullinated hFIB in C57BL/6 mice. We found that hFIB-immunized mice showed high serum levels of anti-citrullinated peptides antibodies (ACPAs). Moreover, hFIB immunized mice showed increased mechanical hyperalgesia, massive leukocyte infiltration, high levels of inflammatory mediators, and progressive joint damage after the intra-articular challenge with citrullinated hFIB. Interestingly, hFIB-induced arthritis was dependent on IL-23/IL-17 immune axis-mediated inflammatory responses since leukocyte infiltration and mechanical hyperalgesia were abrogated in Il17ra-/- and Il23a-/- mice. Thus, we have characterized a novel model of experimental arthritis suitable to investigate the contribution of ACPAs and Th17 cell-mediated immune response in the pathogenesis of RA.
               
Click one of the above tabs to view related content.