Abstract Objective: Globally, cardiovascular diseases (CVDs) are one of the most leading causes of death. In medical screening and diagnostic procedures of CVDs, electrocardiogram (ECG) signals are widely used. Early… Click to show full abstract
Abstract Objective: Globally, cardiovascular diseases (CVDs) are one of the most leading causes of death. In medical screening and diagnostic procedures of CVDs, electrocardiogram (ECG) signals are widely used. Early detection of CVDs requires acquisition of longer ECG signals. It has triggered the development of personal healthcare systems which can be used by cardio-patients to manage the disease. These healthcare systems continuously record, store, and transmit the ECG data via wired/wireless communication channels. There are many issues with these systems such as data storage limitation, bandwidth limitation and limited battery life. Involvement of ECG data compression techniques can resolve all these issues. Method: In the past, numerous ECG data compression techniques have been proposed. This paper presents a methodological review of different ECG data compression techniques based on their experimental performance on ECG records of the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Results: It is observed that experimental performance of different compression techniques depends on several parameters. The existing compression techniques are validated using different distortion measures. Conclusion: This study elaborates advantages and disadvantages of different ECG data compression techniques. It also includes different validation methods of ECG compression techniques. Although compression techniques have been developed very widely but the validation of compression methods is still a prospective research area to accomplish an efficient and reliable performance.
               
Click one of the above tabs to view related content.