LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractional order PID for tracking control of a parallel robotic manipulator type delta.

Photo by chongweirdo from unsplash

This paper presents the tracking control for a robotic manipulator type delta employing fractional order PID controllers with computed torque control strategy. It is contrasted with an integer order PID… Click to show full abstract

This paper presents the tracking control for a robotic manipulator type delta employing fractional order PID controllers with computed torque control strategy. It is contrasted with an integer order PID controller with computed torque control strategy. The mechanical structure, kinematics and dynamic models of the delta robot are descripted. A SOLIDWORKS/MSC-ADAMS/MATLAB cosimulation model of the delta robot is built and employed for the stages of identification, design, and validation of control strategies. Identification of the dynamic model of the robot is performed using the least squares algorithm. A linearized model of the robotic system is obtained employing the computed torque control strategy resulting in a decoupled double integrating system. From the linearized model of the delta robot, fractional order PID and integer order PID controllers are designed, analyzing the dynamical behavior for many evaluation trajectories. Controllers robustness is evaluated against external disturbances employing performance indexes for the joint and spatial error, applied torque in the joints and trajectory tracking. Results show that fractional order PID with the computed torque control strategy has a robust performance and active disturbance rejection when it is applied to parallel robotic manipulators on tracking tasks.

Keywords: delta; control; fractional order; tracking control; order pid

Journal Title: ISA transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.