LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Output feedback model predictive control of hydraulic systems with disturbances compensation.

Photo from wikipedia

Enhancing the robustness of output feedback control has always been an important issue in hydraulic servo systems. In this paper, an output feedback model predictive controller (MPC) with the integration… Click to show full abstract

Enhancing the robustness of output feedback control has always been an important issue in hydraulic servo systems. In this paper, an output feedback model predictive controller (MPC) with the integration of an extended state observer (ESO) is proposed for hydraulic systems. The ESO was designed to estimate not only the unmeasured system states but also the disturbances, which will be synthesized into the design of the output prediction equation. Based on the mechanism of receding horizon and repeating optimization of MPC, the output prediction equation will be updated in real time and the future behavior of the system will be accurately predicted since the disturbances are compensated effectively. Hence, the ability of the traditional MPC to suppress disturbances will be improved evidently. The experiment results show that the proposed controller has high-performance nature and strong robustness against various model uncertainties, which verifies the effectiveness of the proposed control strategy.

Keywords: model predictive; output feedback; control; feedback model; hydraulic systems; output

Journal Title: ISA transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.