LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An eco-driving algorithm for trains through distributing energy: A Q-Learning approach.

Photo from wikipedia

The energy-efficient train operation methodology is the focus of this paper, and a Q-Learning-based eco-driving approach is proposed. Firstly, the core idea of energy-distribution-based method (EDBM) that converts the eco-driving… Click to show full abstract

The energy-efficient train operation methodology is the focus of this paper, and a Q-Learning-based eco-driving approach is proposed. Firstly, the core idea of energy-distribution-based method (EDBM) that converts the eco-driving problem to the finite Markov decision process is presented. Secondly, Q-Learning approach is proposed to determine the optimal energy distribution policy. Specifically, two different state definitions, i.e., trip-time-relevant (TT) and energy-distribution-relevant (ED) state definitions, are introduced. Finally, the effectiveness of the proposed approach is verified in a deterministic and a stochastic environment. It is also illustrated that TT-state approach takes about 20 times more computation time compared with ED-state approach while the space complexity of TT-state approach is nearly constant. The hyperparameter sensitivity analysis demonstrates the robustness of the proposed approach.

Keywords: state; energy distribution; eco driving; learning approach; energy; approach

Journal Title: ISA transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.