World is facing stress due to unpredicted pandemic of novel COVID-19. Daily growing magnitude of confirmed cases of COVID-19 put the whole world humanity at high risk and it has… Click to show full abstract
World is facing stress due to unpredicted pandemic of novel COVID-19. Daily growing magnitude of confirmed cases of COVID-19 put the whole world humanity at high risk and it has made a pressure on health professionals to get rid of it as soon as possible. So, it becomes necessary to predict the number of upcoming cases in future for the preparation of future plan-of-action and medical set-ups. The present manuscript proposed a hybrid fuzzy time series model for the prediction of upcoming COVID-19 infected cases and deaths in India by using modified fuzzy C-means clustering technique. Proposed model has two phases. In phase-I, modified fuzzy C-means clustering technique is used to form basic intervals with the help of clusters centroid while in phase-II, these intervals are upgraded to form sub-intervals. The proposed model is tested against available COVID-19 data for the measurement of its performance based on mean square error, root mean square error and average forecasting error rate. The novelty of the proposed model lies in the prediction of COVID-19 infected cases and deaths for next coming 31 days. Beside of this, estimation for the approximate number of isolation beds and ICU required has been carried out. The projection of the present model is to provide a base for the decision makers for making protection plan during COVID-19 pandemic.
               
Click one of the above tabs to view related content.