LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts

Photo by _michaelsala_ from unsplash

Summary Quinolones and isoquinolones are of interest to pharmaceutical industry owing to their potent biological activities. Herein, we first encapsulated sub-nm Pt nanoclusters into Zr-porphyrin frameworks to afford an efficient… Click to show full abstract

Summary Quinolones and isoquinolones are of interest to pharmaceutical industry owing to their potent biological activities. Herein, we first encapsulated sub-nm Pt nanoclusters into Zr-porphyrin frameworks to afford an efficient photocatalyst Pt0.9@PCN-221. This catalyst can dramatically promote electron-hole separation and 1O2 generation to achieve synergistic effect first in the metal-organic framework (MOF) system, leading to the highest activity in photosynthesis of (iso)quinolones in >90.0% yields without any electronic sacrificial agents. Impressively, Pt0.9@PCN-221 was reused 10 times without loss of activity and can catalyze gram-scale synthesis of 1-methyl-5-nitroisoquinolinone at an activity of 175.8 g·gcat−1, 22 times higher than that of PCN-221. Systematic investigations reveal the contribution of synergistic effect of photogenerated electron, photogenerated hole, and 1O2 generation for efficient photo-oxidation, thus highlighting a new strategy to integrate multiple functional components into MOFs to synergistically catalyze complex photoreactions for exploring biologically active heterocyclic molecules.

Keywords: iso; photo oxidation; effect; sub; synergistic effect

Journal Title: iScience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.