LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into an Oxidative DNA-Cleaving DNAzyme: Multiple Cofactors, the Catalytic Core Map and a Highly Efficient Variant

Photo from wikipedia

Summary An oxidative DNA-cleaving DNAzyme (PL) employs a double-cofactor model “X/Cu2+” for catalysis. Herein, we verified that reduced nicotinamide adenine dinucleotide (NADH), flavin mononucleotide, cysteine, dithiothreitol, catechol, resorcinol, hydroquinone, phloroglucinol,… Click to show full abstract

Summary An oxidative DNA-cleaving DNAzyme (PL) employs a double-cofactor model “X/Cu2+” for catalysis. Herein, we verified that reduced nicotinamide adenine dinucleotide (NADH), flavin mononucleotide, cysteine, dithiothreitol, catechol, resorcinol, hydroquinone, phloroglucinol, o-phenylenediamine, 3,3′,5,5'-tetramethylbenzidine, and hydroxylamine acted as cofactor X. According to their structural similarities or fluorescence property, we further confirmed that reduced nicotinamide adenine dinucleotide phosphate (NADPH), 2-mercaptoethanol, dopamine, chlorogenic acid, resveratrol, and 5-carboxyfluorescein also functioned as cofactor X. Superoxide anions might be the commonality behind these cofactors. We subsequently determined the conservative change of individual nucleotides in the catalytic core under four different cofactor X. The nucleotides A4 and C5 are highly conserved, whereas the conservative levels of other nucleotides are dependent on the types of cofactor X. Moreover, we observed that the minor change in the PL's secondary structure affects electrophoretic mobility. Finally, we characterized a highly efficient variant T3G and converted its double-cofactor NADH/Cu2+ to sole-cofactor NADH.

Keywords: dna cleaving; oxidative dna; cleaving dnazyme; catalytic core; cofactor; highly efficient

Journal Title: iScience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.