LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification and mechanistic analysis of an inhibitor of the CorC Mg2+ transporter

Photo by homajob from unsplash

Summary The CorC/CNNM family of Na+-dependent Mg2+ transporters is ubiquitously conserved from bacteria to humans. CorC, the bacterial CorC/CNNM family of proteins, is involved in resistance to antibiotic exposure and… Click to show full abstract

Summary The CorC/CNNM family of Na+-dependent Mg2+ transporters is ubiquitously conserved from bacteria to humans. CorC, the bacterial CorC/CNNM family of proteins, is involved in resistance to antibiotic exposure and in the survival of pathogenic microorganisms in their host environment. The CorC/CNNM family proteins possess a cytoplasmic region containing the regulatory ATP-binding site. CorC and CNNM have attracted interest as therapeutic targets, whereas inhibitors targeting the ATP-binding site have not been identified. Here, we performed a virtual screening of CorC by targeting its ATP-binding site, identified a compound named IGN95a with inhibitory effects on ATP binding and Mg2+ export, and determined the cytoplasmic domain structure in complex with IGN95a. Furthermore, a chemical cross-linking experiment indicated that with ATP bound to the cytoplasmic domain, the conformational equilibrium of CorC was shifted more toward the inward-facing state of the transmembrane domain. In contrast, IGN95a did not induce such a shift.

Keywords: corc cnnm; binding site; atp binding; cnnm family; mg2; corc

Journal Title: iScience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.