LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MOFs based on the application and challenges of perovskite solar cells

Photo from wikipedia

Summary In recent years, perovskite solar cells (PSCs) have attracted much attention because of their high energy conversion efficiency, low cost, and simple preparation process. Up to now, the photoelectric… Click to show full abstract

Summary In recent years, perovskite solar cells (PSCs) have attracted much attention because of their high energy conversion efficiency, low cost, and simple preparation process. Up to now, the photoelectric conversion efficiency of solar cells has been increased from 3.8% to 25.5%. Metal–organic skeleton-derived metal oxides and their composites (MOFs) are widely considered for application in PSCs due to their low and flat charge/discharge potential plateau, high capacity, and stable cycling performance. By combining MOFs and PSCs, based on the composition materials of perovskite film, electron transport layer, hole transport layer, and interfacial interlayer of PSCs, this article discusses the photovoltaic performance or structure optimization effect of MOFs in each function layer, which is of great significance to improve the photovoltaic performance of the cell. The problems faced by MOFs on perovskite solar cells are summarized, the next research directions are discussed, and the development of this crossover area of MOFs–PSC is foreseen to accelerate the comprehensive research and popularization of MOFs on PSCs.

Keywords: perovskite solar; mofs based; application challenges; based application; solar cells

Journal Title: iScience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.