LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-scale voltage imaging in behaving mice using targeted illumination

Photo from wikipedia

Summary Recent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold transmembrane voltage in vivo. To perform high-speed voltage imaging of many neurons simultaneously over… Click to show full abstract

Summary Recent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold transmembrane voltage in vivo. To perform high-speed voltage imaging of many neurons simultaneously over a large anatomical area, widefield microscopy remains an essential tool. However, the lack of optical sectioning makes widefield microscopy prone to background cross-contamination. We implemented a digital-micromirror-device-based targeted illumination strategy to restrict illumination to the cells of interest and quantified the resulting improvement both theoretically and experimentally with SomArchon expressing neurons. We found that targeted illumination increased SomArchon signal contrast, decreased photobleaching, and reduced background cross-contamination. With the use of a high-speed, large-area sCMOS camera, we routinely imaged tens of spiking neurons simultaneously over minutes in behaving mice. Thus, the targeted illumination strategy described here offers a simple solution for widefield voltage imaging of many neurons over a large field of view in behaving animals.

Keywords: voltage; microscopy; illumination; behaving mice; voltage imaging; targeted illumination

Journal Title: iScience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.