LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuronal population models reveal specific linear conductance controllers sufficient to rescue preclinical disease phenotypes

Photo by cdc from unsplash

Summary Preclinical drug candidates are screened for their ability to ameliorate in vitro neuronal electrophysiology, and go/no-go decisions progress drugs to clinical trials based on population means across cells and… Click to show full abstract

Summary Preclinical drug candidates are screened for their ability to ameliorate in vitro neuronal electrophysiology, and go/no-go decisions progress drugs to clinical trials based on population means across cells and animals. However, these measures do not mitigate clinical endpoint risk. Population-based modeling captures variability across multiple electrophysiological measures from healthy, disease, and drug phenotypes. We pursued optimizing therapeutic targets by identifying coherent sets of ion channel target modulations for recovering heterogeneous wild-type (WT) population excitability profiles from a heterogeneous Huntington’s disease (HD) population. Our approach combines mechanistic simulations with population modeling of striatal neurons using evolutionary optimization algorithms to design ‘virtual drugs’. We introduce efficacy metrics to score populations and rank virtual drug candidates. We found virtual drugs using heuristic approaches that performed better than single target modulators and standard classification methods. We compare a real drug to virtual candidates and demonstrate a novel in silico triaging method.

Keywords: models reveal; population models; disease; drug; population; neuronal population

Journal Title: iScience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.