Summary Visual performance has striking polar performance asymmetries: At a fixed eccentricity, it is better along the horizontal than vertical meridian and the lower than upper vertical meridian. These asymmetries… Click to show full abstract
Summary Visual performance has striking polar performance asymmetries: At a fixed eccentricity, it is better along the horizontal than vertical meridian and the lower than upper vertical meridian. These asymmetries are not alleviated by covert exogenous or endogenous attention, but have been studied exclusively during eye fixation. However, a major driver of everyday attentional orienting is saccade preparation, during which attention automatically shifts to the future eye fixation. This presaccadic attention shift is considered strong and compulsory, and relies on different neural computations and substrates than covert attention. Thus, we asked: Can presaccadic attention compensate for the ubiquitous performance asymmetries observed during eye fixation? Our data replicate polar performance asymmetries during fixation and document the same asymmetries during saccade preparation. Crucially, however, presaccadic attention enhanced contrast sensitivity at the horizontal and lower vertical meridian, but not at the upper vertical meridian. Thus, instead of attenuating performance asymmetries, presaccadic attention exacerbates them.
               
Click one of the above tabs to view related content.