LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantifying the impact of physical activity on future glucose trends using machine learning

Photo from wikipedia

Summary Prevention of hypoglycemia (glucose Click to show full abstract

Summary Prevention of hypoglycemia (glucose <70 mg/dL) during aerobic exercise is a major challenge in type 1 diabetes. Providing predictions of glycemic changes during and following exercise can help people with type 1 diabetes avoid hypoglycemia. A unique dataset representing 320 days and 50,000 + time points of glycemic measurements was collected in adults with type 1 diabetes who participated in a 4-arm crossover study evaluating insulin-pump therapies, whereby each participant performed eight identically designed in-clinic exercise studies. We demonstrate that even under highly controlled conditions, there is considerable intra-participant and inter-participant variability in glucose outcomes during and following exercise. Participants with higher aerobic fitness exhibited significantly lower minimum glucose and steeper glucose declines during exercise. Adaptive, personalized machine learning (ML) algorithms were designed to predict exercise-related glucose changes. These algorithms achieved high accuracy in predicting the minimum glucose and hypoglycemia during and following exercise sessions, for all fitness levels.

Keywords: type diabetes; machine learning; following exercise; quantifying impact; exercise

Journal Title: iScience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.