Abstract Satellite temporal resolution affects the fitting accuracy of vegetation growth curves. However, there are few studies that evaluate the impact of different satellite data (including temporal resolution and time… Click to show full abstract
Abstract Satellite temporal resolution affects the fitting accuracy of vegetation growth curves. However, there are few studies that evaluate the impact of different satellite data (including temporal resolution and time series change) on spring green-up date (GUD) extraction. In this study, four GUD algorithms and two different temporal resolution satellite data (GIMMS3g during 1982–2013 and SPOT-VGT during 1999–2013) were used to investigate winter wheat GUD in the North China Plain. Four GUD algorithms included logistic-NDVI (normalized difference vegetation index), logistic-cumNDVI (cumulative NDVI), polynomial-NDVI and polynomial-cumNDVI algorithms. All algorithms and data were first regrouped into eight controlled cases. At site scale, we evaluated the performance of each case using correlation coefficient (r), bias and root mean square error (RMSE). We further compared spatial patterns and inter-annual trends of GUD inferred from different algorithms, and then analyzed the difference between GIMMS3g-based GUD and SPOT-VGT-based GUD. Our results showed that all satellite-based GUD were correlated with observations with r ranging from 0.32 to 0.57 (p
               
Click one of the above tabs to view related content.