LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generating a hyperspectral digital surface model using a hyperspectral 2D frame camera

Photo from wikipedia

Abstract Miniaturised 2D frame format hyperspectral camera technology that is suitable for small unmanned aerial vehicles (UAVs) has entered the market, making the generation of hyperspectral digital surface models (HDSMs)… Click to show full abstract

Abstract Miniaturised 2D frame format hyperspectral camera technology that is suitable for small unmanned aerial vehicles (UAVs) has entered the market, making the generation of hyperspectral digital surface models (HDSMs) feasible. HDSMs offer a rigorous approach to capturing the target spectral and 3D geometric data. The main objective of this investigation was to study and develop techniques for the generation of HDSMs in forest areas using novel hyperspectral 2D frame camera technologies. An approach based on object-space image matching was developed, adapting the traditional vertical line locus (VLL) method for HDSM generation; this was then named the hyperspectral VLL (HVLL) approach. Additionally, image classification was introduced into the processing chain in order to adapt the matching parameters, based on different classes. We also proposed a method for extracting the spectral and viewing angle information of the points. An empirical study was carried out using UAV datasets from tropical and boreal forests using 2D format hyperspectral cameras, based on tuneable Fabry-Perot interferometer (FPI) technology. Quality assessment was performed using DSMs based on state-of-the-art commercial software and airborne laser scanning (ALS). The results showed that the proposed technique generated a high-quality HDSM in both tested environments. The HDSM had higher deviations over the continuous canopy cover than the digital surface models (DSMs) generated using commercial software. The method using image classification information outperformed the commercial approach with respect to the ability to measure ground points in shadowed areas and in canopy gaps. The proposed method is of great interest in supporting automated interpretations of novel multi- and hyperspectral imaging technologies, especially when applied complex objects, such as forests.

Keywords: hyperspectral frame; frame camera; hyperspectral digital; digital surface; camera

Journal Title: ISPRS Journal of Photogrammetry and Remote Sensing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.