Abstract The ubiquity of cameras built in mobile devices has resulted in a renewed interest in image-based localisation in indoor environments where the global navigation satellite system (GNSS) signals are… Click to show full abstract
Abstract The ubiquity of cameras built in mobile devices has resulted in a renewed interest in image-based localisation in indoor environments where the global navigation satellite system (GNSS) signals are not available. Existing approaches for indoor localisation using images either require an initial location or need first to perform a 3D reconstruction of the whole environment using structure-from-motion (SfM) methods, which is challenging and time-consuming for large indoor spaces. In this paper, a visual localisation approach is proposed to eliminate the requirement of image-based reconstruction of the indoor environment by using a 3D indoor model. A deep convolutional neural network (DCNN) is fine-tuned using synthetic images obtained from the 3D indoor model to regress the camera pose. Results of the experiments indicate that the proposed approach can be used for indoor localisation in real-time with an accuracy of approximately 2 m.
               
Click one of the above tabs to view related content.