Abstract The performance of synthetic aperture radar (SAR) image change detection is mainly relied on the quality of the difference image and the accuracy of the classification method. Considering the… Click to show full abstract
Abstract The performance of synthetic aperture radar (SAR) image change detection is mainly relied on the quality of the difference image and the accuracy of the classification method. Considering the above mentioned issues, this paper proposes an unsupervised framework for SAR image change detection in which each pixel is taken as a vertex and the collection of pixels is represented by hyperedges in a hypergraph. Thus, the task of SAR image change detection is formulated as the problem of hypergraph matching and hypergraph partition. First, instead of using the K nearest neighbour rule, we propose a coupling neighbourhood based on the spatial-intensity constraint to gather the neighbours for each vertex. Then, hyperedges are constructed on the pixels and their coupling neighbours. The weight of hyperedge is computed via the sum of the patch-based pairwise affinities within the hyperedge. Through modelling the two hypergraphs on the bi-temporal SAR images, not only the change level of vertices is described, but also the changes of local grouping and consistency within hyperedge are excavated. Thus, the difference image with a good separability can be obtained by matching each vertex and hyperedge between the two hypergraphs. Finally, a generalized hypergraph partition technique is employed to classify changed and unchanged areas in the generated difference image. Experimental results on real SAR datasets confirm the validity of the proposed framework in improving the robustness and accuracy of change detection.
               
Click one of the above tabs to view related content.