LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feature-preserving 3D mesh simplification for urban buildings

Photo from wikipedia

Abstract The goal of urban building mesh simplification is to generate a compact representation of a building from a given mesh. Local smoothness and sharp contours of urban buildings are… Click to show full abstract

Abstract The goal of urban building mesh simplification is to generate a compact representation of a building from a given mesh. Local smoothness and sharp contours of urban buildings are important features for converting unstructured data into solid models, which should be preserved during the simplification. In this paper, we present a general method to filter and simplify 3D building mesh models, capable of preserving piecewise planar structures and sharp features. Given a building mesh model, a mesh filtering technique is firstly designed to yield piecewise planar regions and extract crease contours. The planar regions are used to constrain the simplification of the mesh. Mesh decimation is achieved through a series of edge collapse operations, which uses regional structural constraints and local geometric error metrics to handle planar and non-planar areas respectively. The proposed method preserves the mesh structure with meaningful levels of detail while reducing the number of faces. The effectiveness of this method is evaluated on various building models generated from different observation scales, and the performance is validated by extensive comparisons to state-of-the-art techniques.

Keywords: simplification; planar; mesh simplification; urban buildings; building mesh

Journal Title: Isprs Journal of Photogrammetry and Remote Sensing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.